
UNCLASI FI ED

AD250 937
Repoodced

'IUMED SERVICES TUFNICAL INFORMAION AGENCY
ARLIN"iTiN HALL STATION
ARJUNGTON1 12, VIRGINIA

* JO .~ .R~t~r t I Sf e I.I



NOTICE: When goverment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment my have fornUated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



AFCRLr-TN-60-1178
Piepared for
Electronics Research Directorate
Air Force Cambridge Research Laboratories
Air Force Research Division
Air Research and Development Command
United States Air Force

Befod Majs achusetts

GHES
SE ARC H LABORATORIES

APPLIED TO PATTERN SYNTHESIS

A. Ksienski

scientific Report No. SR 1.90R/R

I Contract AF 19(604) -3508

I October 1960

XEROX

A ST I A

i n ~ HUGHES I_ _ _ _ _ _ _ _ __ _ _ _ _

HUGHES AIRCRAFT COMPANY
RESEARCH LABORATORIES

Malibu, California



AFCRL-TN--60-1173

HUGHES RESEARCH LABORATORIES
- Malibu, California

a division of hughes aircraft company

INTERPQLATION TECHNIQUES
-- APPLIED TO PATTERN SYNTHESIS

A. Ksieriski

Scientific Report No. 3508/8

on Contract AF 19(604)- 3508

Prepared for
1 Electronics Research Directorate

Air Force Cambridge Research Laboratories
Air Force Research Division
Air Research and Development Command
United States Air Force
Bedford, Massachusetts



TABLE OF CONTENTS

1 ABSTRACT .............................. iii

1 I. INTRODUCTION............................1

II. TRIGONOMETRIC INTERPOLATION ............ 1

:III. ERROR ANALYSIS ......................... 5

IV. FXAMP ES .... o .. .. . ....... 1?

V. CONCLUSIONS ........................... 16

I:APPENDIX I: Computation of the Coefficients
of a Fourier Interpolatioi Sum
of 6 Terms Approximating a
Sector Beam (See Figure 2) ........ 16

APPENDIX II: Approximate Characteristics
of Woodward Synthesis for
Continuous Apertures ............ 17

1

ii



ABSTRACT

A j-ja ern synthesis method is presented that has
approximative characteristics similar to that of a Fourier
series but is computationally much simpler, and conse-
quently results in a higher over-all accuracy. Error
estimates and convergence measures are presented, which
compare the above synthesis to the Fourier approximation
and the Woodward method.
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I. INTRODUCTION

The two most important requirements in pattern synthesis are
minimization of error and the ease of computation in obtaining the ex-
citation coefficients. Sometimes one of the two has to be sacrificed
for the other. Thus, of the two most prevalent methods, the Fourier
expansion is the synthesis procedure that results in a known error which
is also minimized in the mean square sense. The difficulty in obtaining
the excitation coefficients is often quite serious, particularly if one has
to include the element factor in the expansion. On the other hand, the
Woodward synthesis procedure is quite easy computationally but lacks

L, error estimates for points that fall between the selected beam positions
for which the pattern is exactly matched. It is thus impossible to pre-
dict the required number of array elements, or the aperture width, to
meet given error specifications, and in fact, the question arises whether
the error decreases at all for a larger number of terms in the approx-
imating sum.

Most of these problems can be solved if one uses trigonometric
interpolation. The technique is both straightforward and computation-
ally easy and accurate. The estimated maximum error is of the same
order of magnitude as that of the Fourier approximation, but the actuai
error may sometimes exceed the Fourier error and sometimes be
smaller.

II. TRIGONOMETRIC INTERPOLATION

t The method of interpolation is rather well known, but it appears
that it has been overlooked in many applications. One reason is that
often poor results have been obtained from this method; another is the
difficulty of inverting a large matrix and the inherent numerical inac-
curacies incurred in such inversion even with the aid of a compitter.
The cause of both problems lies in the fact that the various terms of the
polynomials usually used for interpolation, namely powers of x, are
not mutually orthogonal. The large errors of approximation can be re-
duced by introducing a non-uniform spacing between interpolation points
which if properly chosen will result in a Tchebyscheff polynomial. But
the inversion difficulty still remains.

In the case of a trigonometric or exponential polynomial- the various
terms are mutually orthogonal, not only with respect to the integral over
the period of orthogonality but also with respect to the sum. Thus if the
functions i and k are mutually orthogonal we have

n

i (x) k(Xa) 0 for i k (1)



where xa are the interpolation points covering the orthogonality period as
in the integration case. The expansion coefficient is given by

n

~. ~ ~ Yi (x)

CL= (2)

Z x(x)

where Ya 'a the value of the approximated function at x That this is
the correct value can be seen from the following. Let

N

.10

which defines the interpolation values and their location. Multiplying
both sides by 1 (x a) and summing over a, we obtain

n N n

*Ii(x )Z7c (x ) = (x )y (4)CL= j= J aT 1 aC

Interchanging the order of summation on the left, namely, summing over
kk IN first, we obtain

N n ( n
(x ( X cj (5)

usin theovthogonality given in equation (1). Thus,

n n
c. 2 (X) L ~(X (2a)

a1 / ia

CL= CL



which is equivalent to equation (2).

In the case of complex 4i(x) the expression for c. will be given by
n

Ya i (x)

U. = 1 (2b)
1.n i (x)

K where-. is the complex conjugate of&. The orthogonality condition is
given bya

In
0i(xa) Ok (x ) 0 (Ib)

I The surnmation (x is the normalization constant for the

vector i(x)

For an array of ZN + 1 isotropic elements spaced X /2 apart, the set of
-functions forming our orthogonal function space are %e where u =sin 9.

The expression representing the array is given by

P (u) = a e jn-r u (6

n= N

and the excitation coefficient a is given by,

N a.

a -Y ye (7)
n 2N
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where the prime implies that the first and last ordinates (y-N' YN)

are taken with half their value. Also, the first and last excitation coef-
ficients are applied with half of their computed value. 1 The reason for
this weighting factor which is applied to the end forms may be seen from
the expression

VT 1 -ejnQ+ - ~ - 1)Q0 +~ -1 eJ~f'Q~ nQ-Le -m+ e +-...+ + e +-L = sinnQ cotG/Z (8)

'n' m Wf4 = e ( Trx )te
which vanishes for Q = n, where m 0, 1, 2 If .. e..then

j k)x. j (I - k) 'TL

(x.) .k (x)=e =e (ic)
and

which satisfied the orthogonality property with the above weighting. kOne
actually may omtteedeeetadconstruct the ntrotonwithout

[ on

tnamely, use 2N elements covering the interval of 2r ( --Zn 1 of the

~interpolation range, the reason being that the value of the ordinate at 2vn
is identical with its value at Bero. The sum corresponding to equation

': (8)will be

: r Thusj( k)E.
1 + + 3~ +...+ ei 2 ~1  ~ n 0 for I k 10

(x) (x) e = (11)

w In the case that y(u), the desired function, is even or odd, the cor-

responding expressions or the coefficients will be simplified and given by

n~ ~ ~~2 + I ocsa(Z

ao=O

4



for an even y(u), where

aN
ao + a, cos iru + a2 cos 2Tru +... a cos(N- l)ru+ cosNiru

(13)

For an odd y(u)

N-i
b = -- )y sin na 1r (14)

= n a N

where

y(u). b1 sin wu + b2 sin 2u+ .... +bN sin(N- 1) u (15)

Note that the cosine expansion has the same characteristic as the ex-
ponential, in that the first and last terms appear with half value both in
the expansion and in the computation of the coefficients of excitation (see
Appcndix I). Thus it is seen that the solution of the interpolation problem
does not involve any matrix inversion, therefore ensuring that no loss of
accuracy occurs throughout the computational process.

III. ERROR ANALYSIS

The problem of error estimates is becoming more important because
of the stringent requirements of modern applications. And in view of the
increasing size of arrays used the questions of convergence of the represent-
ing series are also becoming relevant, It was therefore considered of im-
portance to discuss these characteristics as they apply to the three methods
mentioned above, namely, the Fourier approximation, the trigonometric
interpolation, and the Woodward method. Since the Woodward method is
presently in wide use, a particular attempt was made to investigate the con-
vergence properties of this method and also to estimate its approximation
error as compared with the Fourier method.I

The Fourier approximation and the trigonometric interpolation have
the same convergence properties which can be expressed as follows: Z
If (x) is continuous with modulus of continuity w(8) (which means that th

(6) If(x) - f(x1 ) for fx2 - x 1 -< 6) and s n (x) iS the Fourier n
max

partial sum, then

f(x) - (x) : A w (-L-) log n (16)

n5



If w(6) log 6-'0 as 6-0, then s (x))--'f(x) uniformly. If f(x) has a pth
- derivative jP (x) such that n

fP (x z ) - fP(x 1 ) - k (x2 - x1) (17)

for all x and x., X being constant, then

A X logn
* f(x) - n(x) , p 18)

or
iA

)ix) a n (19)

,n p

where A is an absolute constant depending on p alone. The same estimate
holds forPa trigonometric interpolating sum of the same number of terms.
Thos the cnnvergence properties of the two approximation methods are
identical.. This similarity holds as well for piecewise continuous function.

Now let us consider the Woodward approximation. For a discrete

array of 2N + 1 elements spaced X/2 the Woodward expression would be'si n- ZN( __+__) Zn

a insin (U N

n= -N 2 N + '1

which when expanded is equal to

N

Pau) =  a cos nru + bn sin nu (21)
n= 0

which is a trigonometric sum of the n order. This sum equals t e
desired function at exactly ZN + 1 points spaced at distances oft

2N + 1
from each other. This, however, is by definition an equispaced trigono-
metric interpolation and as such should have again the same covergence
properties as the Fourier expansion. Thus the convergence properties
of all three methods are the same.

The next question is that of the error estimate. This problem is
very difficult if a useful estimate is wanted, namely, within a few percent
of the actual error. This is the reason why equations (16)-(19) cannot
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serve this purpose and are good only as a convergence criterion when a'
large number of terms are involved. The difficulty lies in finding the lowst
upper bound on the constant A or A in each of the cases mentioned above..
A constant which is close to this optimum is availa le for the Fourier ap-
proximation of continuous functions and is given by

A 222)

so that the error estimate in the maximum absolute deviation sense is
given by

E n< lgnp  Mp (23)

where n is the order of the. 9orresponding Fourier partial sum, and M is
the maximum value of the p1' derivative of the approximated function, This
estimate seems to hold even when applicd to functions contatning discontinuitiesti except in the vicinity of the discontinuity where the occurrence of the Gibb's

phenomenon will produce a deviation of approximately 9 percent of the total
jump in the function, This deviation is independent of n. This phenomenon~can be eliminated by the modification of th Fourier coefficients in a manner

which is equivalent to a Fejer summation.

For the trigonometric interpolation process such minimal constant isi not available, but it can be shown that the error in the interpolation method

is very close to that of the Fourier approximation. It will be shown that
the difference between the two is in fact that the Fourier partial sum of nth

~order completely neglects higher order components, while In the interpola-

tion method the higher or er components get reflected and add on to the
lower order componenitsI However, for a good Fourier approximationthe deviation often h prilsmfrom the desired function Is very small;

this implies that the higher order components are negligible, and hence it
makes little difference whether their amplitudes are recorded or not. Also,
one should remember that although any modifications of the Fourier

Reference 4, page 105.
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components increase the mean square error, they do not necessarily
increase the maximum deviation; in fact, in some cases they decrease
it. One such example is the tapering of higher order Fourier components
which was shown to lead to a snlaller maximum deviation than that of the
equivalent Fourier partial sum. Let us consider in detail the effect of
substituting the interpolation method for the Fourier approximation. If
the approximated function f(x) has only the first N Fourier components,
both methods will yield the function exactly. In the case of higher order
components they will be recorded in the following way: consider the
(N + k)th Fourier component of the mth term in the interpolation sum

mN + k and assume we have an odd function such that only sines are
present.

N + k = sin (N + k)x sin mx (24)Jm

for= (sin Nx cos kx + cos Nx sin kx) sin mx
!for I

x -2-- N - I

N+k an
(m (co air sin k -- ) sin mx (25)

Now consider the (N k) th Fourier c9mponent of the mth term

nmN  k = sin (N-k) x sin mx (26)

*The mean square error is equal to

f(x) Z aeix dx= i. f f(x) +Zn o' na

where an is the Fourier coefficient and a' = a + En , and f(x) is the
approximated function. Substituting for a' we getn

"- Lf If(x) 1 dx +Za' (a n' - 2a) = -f f(x)1 +Z(an+ )(En- a)

fl [ - +E 1 1f-
f W dx a + Z >1 f (x) zdxZ a

IT P ~ )d n n -- n

where the equality sign holds only for e n 0.
n
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which for x = a-n- results in

N -k air N+ k= -(cos air sin k -R-) sin (mx) =in m

Thus it is seen that the higher odd harmonic components of the function
f(x) will be recorded with reversed sign as lower components. The even
harmonics are recorded with the same sign as can be seen from the fol-
lowing equation,

= k(k cos.(Nk)sx N-kT-N + k = cos(N+k)xcos ex= coo aircos k Nl = co( m~ oan=1 -

in N mn
air .(7

for x = N(2)

As mentioned above, if the higher order components are negligible in
magnitude, their effect will be just as negligible in the Fourier series as
it is in the interpolation case. In the case that these components are uig-
nificant the implication is that the Fourier approximation will have a
significant error. In this case the interpolation will also suffer from a
similar although not identical error, and the maximum deviation error will
be somewhat smaller in some cases and somewhat larger in others, but
it will be of the same order of magnitude as that of the Fourier approxima-
tion.

It Let us now investigate the error involved in the Woodward technique.
As mentioned, the Woodward technique is an interpolation method with its
interpolation points slightly closer together than in the method previouslyI discussed. Thus for an N t h order trigonometric sum the spacing is

-- in the Woodward as compared to--M- for the former one. One can
uMMtdively say that the two methods shou~d yield almost the same results

when N is relatively large, and assuming that f(x) is continuous. We shall
try to show in a more rigorous fashion that the two interpolations are quite
similar and also indicate in what way they differ.

To simplify the discussion we will assume that f(x) is an even function
of x; this does not result in loss of generality since a similar proof may be
used for an odd function and a sum of the two can represent any arbitrary
function. Since f(x) is even, it is represented by a summation of cosines
alone. Thus, let the regular interpolation sum discussed previously be
represented by P (x) and the Woodward sum by P (x); hence

N

PI(X) a n cos nx (28)

9



IW
where Pl(X? f(x) at x a -a 0, 1 I, ... + N

N

P 2  -- Z b cos nx (29)
n= 0

ZIT
where P (x) f(x) at x = a a = O + 1, +N

Let us now substitute powers of cos x for cos nx such that

N N

P(x)=j ancoSnxE 0 Ancos x (30)

0 0] and

N N

Z b () b ,ncoSnx6T B Cosnx (31)

0 0

Now substituting y ior cos x we obtain,

N

P 1 (Y) A n Y (32)

0

and
N

P (y) B yn (33)
0

where

0 -- x -----r + I aty _a-t

We now have two polynomials of y interpolating the function f(y) where
y = cos irx. This amounts to a Lagrangian interpolation whose char-
acteristics are well known and where the error, or remainder, is given
by

R(y) : 0N-y) , (34)

10



where
W(y)-- (y - 'o (Y - 1l)  , .(y -Pn )  (35)

and where the Pn are the interpolation points. At these points the function
is equal to the polynomial and therefore the error must vanish. The value
Srepresents a point close to the middle of the interpolation interval of
P(y), and is connected with the location of pn"

Now let us compare the two remainder expressions

(y-l)(y-cos-t) (y -cos - ( fN+l (36)

and

(Y )(-Co Tf 2ir N
R (y-l)(y-cos 2N+1 )' (y-cos ZN+l f N+l (37

R2Y (N + 1) !(7

The difference between the expression is in 6 and in the p n. For a
fairly smooth function the variations of fN+l (x) are limited. The change

in 6 is directly related to the distribution of p., and a small shift in
those points will produce a correspondingly small change in . Exag-
gerating this shift by assuming that all points moved by an amount:

N ZN + 1 - N(?N + 1) (38)

we obtain that the change in fN+l (g) is given by

fN 1 Nl~ I.JJN+( 1 +) i2 (39)_ -- 2 N(ZN+ 1) 19

The difference in, the p 's is reflected in the values of w(y). Now for
most of the interval of rpproximation the zeros of w?(y) are more closely
spaced than that of wl(y); hence, the magnitude of wZ(y) : wl(y) for this
range. However the error will increase in the vMcinity of y= -1 (x- Ir),
since a zero located there was shifted to x = 27r. The value of the

ZN+ I
error may be calculated if desired by computing the total effects of the
zero shifts. From a practical point of view this often is of no importance
since the element factor may produce a zero at precisely that location,
whi.h is the end of the visible range. Thus for the range of interest and
for N>>l

1i



( N) + f + _ _ 1

R 2 (y)R(y) N 2+ N2N+IL , R 1 (y) (40)fN+l(I) -

We can therefore see that for relatively long arrays the error in a Wood-
ward synthesis is not substantially different from the Fourier, except at
the end of the visible range. If the array is not subject to scanning, this
may not be objectionable at all.

For continuous apertures the approximation characteristics of the
Woodward method are of similar nature, and it can be shown that the
approximating sum converges uniformly to the desired (continuous) pat-

1 tern. (For a discussion on the continuous aperture approximation see
Appendix II.)

IV. EXAMPLES

In order to provide a comparative example for the above methods of
approximation a simple pattern was chosen which is easy to obtain by means
of any of the above methods, namely a sector beam of ±300 beamwidth.
Since the beam containa.discontinuities, it is a good example of the Gibb's
phenomenon as well. If we compare Figure 1 with Figure 2, we can see
that the interpolation method yields excellent results except for the over.
shoot area which seems to suffer even more than the original Fourier ap-
proximation. This tends to confirm the original contention that in some
cases errors may be worse than those of the Fourier method and in some
cases better. Thus it seems that in the continuous range the interpolation
method results in a smoother pattern and in the discontinuous it is more
oscillatory. Turning now to the Woodward approximation (see Figure 3)I it is seen that the error is substantially larger than in the former cases
at the end of the visible range while it is quite similar at the origin, in
fact as the remainder expression indicated the error at the origin is smallerthan either the error of the Fourier method or of the interpolation techniques.

12
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Figure 1. Fourier approximation of a sector beam
using 11 elements spaced X/2 apart.
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Figuare 2. Polynomial interpolation of a sector beam
using 11 elements spaced X/2 apart.
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Figure 3. Woodward approximation of a sector beam
using II elements spaced X/2 apart
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V. CONCLUSIONS

A method has been presented by means of which an approximation to
any desired pattern can be synthesized having error characteristics very

9 similar to those of a Fourier approximation. The method is simpler corn-
putationally than the Fourier and consequently is subject to fewer computa-
tional errors as well as fewer expenses.

The convergence and error characteristics of the Fourier, the Wood-
ward, and the interpolation methods have been presented and an example
has been computed to demonstrate the error behavior. The results indicate
that all -three methods are adequate in many instances but in some the
Woodward method may not be satisfactory.

V
APPENDIX I

Computation of the Coefficients of a Fourier Interpolation Sum
of 6 Terms Approximating a Sector Beam (see Figure 2).

The first coeLficient is given by

. 0. 2 4 . + 1) =0.5

~0

The coefficients of cos nru are

a 5 (0. 5 + coo 0. Zff + cos 0.,4f) 0. 646

a a
a 2 C" 0a co ( 0. 5 + c os 0,4ff + coo 0. 8ir) 0

2 5 a a

2a y Coi -- '= -(0.5+cos0,6r+cosl. 2r)= -0. Z47

4 .5 Ya ond5 -aar(0.5e+icv 0.8 + cos 1.6 o)= 0

l 2 5 a 5l 2 5

Note that a Q and a 5 are divided by Z. The resultant expression for the poly-
nomial is given by

F(u) = 0. 5 + 0. 646 cos 27ru - 0. 247 cos.37ru + 0. 100 cos 5,rru.

16



APPENDIX II

Approximate Characteristics of Woodward Synthesis for Continuous Apertures.

The Woodward synthesis is closely related to thg sampling theorems
in networks, and certain recent mathematical results obtained inthat field
can be applied when properly interpreted. For an infinite aperture the
pattern can be obtained exactly as long as the transform pair exists,

0 ()j~[F(x)e~xudx ; F(x) =f 0(u) e"Jxudu (11- 1)

where u = w sin 9 and x is measured in half wavelength units (-d where
f d has the dimension of length), F(x) represents the excitation wiie G(u)

-wepresents the far field pattern. The case of practical interest, however,
involves apertures of finite size. One can obtain an upper bound on the
error of the Woodward approximation for such cases, and one can also
show that this error goes uniformly to zero as the aperture increases in-
definitely. The error depends on the behavior of the part of the excitation
distribution that is omitted due to the finiteness of the available aperture.
We will assume that this excitation attenuates at a certain rate (if it did not
attenuate the transform pair of equation (II-1) would not exist) given by

jF(x) <M1 ix -k1

x>W 1i-21

where F'(x) is the derivative of F(x), WX is the aperture width, and
M 1 > 0, 1V2 >0, k 1 > 2, k 2 > 2. Another constant representing the
characteristics of the pattern both in the visible and invisible ranges is
given by

M uG(u)Idu (11-3)M3  / '-.(T-3

The behavior of G(u) outside the visible range may be arbitrarily specified,
and since it represents the reactive energy, it may be advantageous to re-
quire that it be small. One must remember though, that its specification
will affect the conditions given by equation (11-2) which affect the error ex-
pressions. The error bound is given by

17



I

N - I Ik 1  k2 +4 2 -k~
7 f/.flA Sin(Wu _In) -G(u)- f 'W' Wu-Wn < 6M 1 W + M Z k2 - 1W

n N- 1

5M~ M wkl 27f~~ + NwIn (ZNw-1I
3 + 8(k - 1) J NW 1 -II-4.

From equation (11-4) one can see that the third term on the right hand side

goes uniformly to zero when N goes to infinity, and W remains fixed. Let-

ting N>W implies that beams are pointed in imaginary directions., that is,
the presence of some reactive energy. However, this does not imply super-
gain; it just requires that the reactive components of the excitation function

j tbe properly adjusted. Under such conditions the error bound is given by

- - the first two terms alone, namely,

I -k k 2 ;k
Error= 6M 1 W +M 2  -W.

Ii which goes to zero as W, or the aperture width increases indefinitely.

I
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